A Note on Estimates of Diagonal Elements of the Inverse of Diagonally Dominant Tridiagonal Matrices

نویسندگان

  • Marina Popolizio
  • TIZIANO POLITI
  • MARINA POPOLIZIO
چکیده

In this note we show how to improve some recent upper and lower bounds for the elements of the inverse of diagonally dominant tridiagonal matrices. In particular, a technique described by [R. Peluso, and T. Politi, Some improvements on two-sided bounds on the inverse of diagonally dominant tridiagonal matrices, Lin. Alg. Appl. Vol. 330 (2001) 1-14], is used to obtain better bounds for the diagonal elements. Estimates of Diagonal Elements Tiziano Politi and Marina Popolizio vol. 9, iss. 2, art. 31, 2008 Title Page

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Tridiagonal Inverse Quadratic Eigenvalue Problems with Partial Eigendata

In this paper we concern the inverse problem of constructing the n-by-n real symmetric tridiagonal matrices C and K so that the monic quadratic pencil Q(λ) := λI + λC + K (where I is the identity matrix) possesses the given partial eigendata. We first provide the sufficient and necessary conditions for the existence of an exact solution to the inverse problem from the self-conjugate set of pres...

متن کامل

The infinity norm bound for the inverse of nonsingular diagonal dominant matrices

In this note, we bound the inverse of nonsingular diagonal dominant matrices under the infinity norm. This bound is always sharper than the one in [P.N. Shivakumar, et al., On two-sided bounds related to weakly diagonally dominant M-matrices with application to digital dynamics, SIAM J. Matrix Anal. Appl. 17 (2) (1996) 298–312]. c © 2008 Published by Elsevier Ltd

متن کامل

Two side bounds on the inverses of diagonally dominant tridiagonal matrices

We establish upper and lower bounds for the entries of the inverses of diagonally dominant tridiagonal matrices. These bounds improve the bounds recently given by Shivakumar and Ji. Moreover, we show how to improve our bounds iteratively. For an n n M{matrix this iterative reenement yields the exact inverse after n ? 1 steps.

متن کامل

The Class of Inverse M-Matrices Associated to Random Walks

THE CLASS OF INVERSE M-MATRICES ASSOCIATED TO RANDOM WALKS∗ CLAUDE DELLACHERIE† , SERVET MARTINEZ‡ , AND JAIME SAN MARTIN‡ Abstract. Given W = M−1, with M a tridiagonal M -matrix, we show that there are two diagonal matrices D,E and two nonsingular ultrametric matrices U, V such that DWE is the Hadamard product of U and V . If M is symmetric and row diagonally dominant, we can take D = E = I. W...

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007